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Table 1 Generic aluminum alloy (E = 70 GPa, ν = 0.33) stiffness matrix and density 

 GPa

103.7 51.1 51.1 0 0 0
51.1 103.7 51.1 0 0 0
51.1 51.1 103.7 0 0 0

'
0 0 0 26.3 0 0
0 0 0 0 26.3 0
0 0 0 0 0 26.3

 
 
 
 

=  
 
 
 
  

C ,       kg/m32700ρ =  

 

Table 2 7075-T6 aluminum alloy (E = 71.7 GPa, ν = 0.33) stiffness matrix and density 

 GPa

106.2 52.3 52.3 0 0 0
52.3 106.2 52.3 0 0 0
52.3 52.3 106.2 0 0 0

'
0 0 0 26.7 0 0
0 0 0 0 26.7 0
0 0 0 0 0 26.7

 
 
 
 

=  
 
 
 
  

C ,       kg/m32810ρ =  

 

Table 3 T300-914 CFRP unidirectional composite stiffness matrix and density 

 GPa

143.8 6.2 6.2 0 0 0
6.2 13.3 6.5 0 0 0
6.2 6.5 13.3 0 0 0

'
0 0 0 3.4 0 0
0 0 0 0 5.7 0
0 0 0 0 0 5.7

 
 
 
 

=  
 
 
 
  

C ,       kg/m31560ρ =  

 

Table 4 Fully orthotropic CFRP composite stiffness matrix and density 

 GPa

70 23.9 6.2 0 0 0
23.9 33 6.8 0 0 0
6.2 6.8 14.7 0 0 0

'
0 0 0 4.2 0 0
0 0 0 0 4.7 0
0 0 0 0 0 21.9

 
 
 
 

=  
 
 
 
  

C ,       kg/m31500ρ =  
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PROBLEM 1: CHRISTOFFEL EQUATION FOR BULK WAVES 
Consider a plane wave propagating through an isotropic material of stiffness matrix C  in a 
direction contained in the vertical plane 1 3x O x  and rotated by an angle θ about the 2x  axis. Do 
the following: 

(a) Calculate the stiffness tensor c  
(b) Calculate the acoustic tensor Γ  
(c) State the Christoffel equation and find its eigenvalues 
(d) Find the wavespeeds corresponding to these eigenvalues 
(e) Find the polarization direction for each wavespeed 
(f) Identify any pure waves that might show up during the analysis 

 
Solution: 
(a) Calculate the stiffness tensor c : The stiffness tensor c  is obtained from the stiffness matrix 
C  using the correspondence formulae given in Eq. (2.35). This conversion was discussed and 
exemplified in Problem 2.2 of Chapter 2. In this problem, the stiffness matrix C  is taken to be 
the material stiffness matrix 'C , i.e., '=C C . 
(b) Calculate the acoustic tensor Γ . The acoustic tensor Γ  is a 3 3×  matrix given by Eq. (4.16), 
i.e., 

 
11 12 13

12 22 23

13 23 33

Γ Γ Γ 
 = Γ Γ Γ 
 Γ Γ Γ 

Γ  (4.16) 

The elements imΓ  of Γ  are defined by Eq. (4.12) in terms of the elements of the stiffness tensor 

ijkmc=c  and the direction cosines jn  of the wavefront direction, 1 1 2 2 3 3n n e n e n e= + +
    , i.e.,  

 
3 3

1 1
im ijkm k j

j k
c n n

= =
Γ = ∑∑                  , , , 1,2,3i j k m =  (4.12) 

For this problem, the direction cosines are 1 cosn θ= , 2 0n = , 3 sinn θ= . 
(c) State the Christoffel equation: The Christoffel equation for bulk composite is given by Eq. 
(4.19), i.e.,  
 ˆ ˆλ=Γu u  (4.19) 
Find its eigenvalues: Eq. (4.19) represents an algebraic eigenvalue problem for which numerical 
tools are readily available. Solution of Eq. (4.19) yields three eigenvalues Iλ , IIλ , IIIλ , and the 
corresponding eigenvectors ˆ Iu , ˆ IIu , ˆ IIIu . 

(d) Find the wavespeeds corresponding to these eigenvalues: Recall the relation 2vλ ρ= . 

Hence, the wavespeed is calculated as v λ ρ=  
(e) Find the polarization direction for each wavespeed: the polarization direction for a given 
wavespeed v  is defined by the eigenvector û  corresponding to the eigenvalue λ  that generated 
that wavespeed. 
(f) Identify pure waves: pure waves are the waves that have the polarization direction aligned 
with the wave propagation direction. 
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PROBLEM 2: CHRISTOFFEL EQUATION IN BULK ISOTROPIC MATERIAL 
The Christoffel equation was developed for anisotropic materials. However, in this problem, we 
will apply the Christoffel equation approach to an isotropic material in order to establish that the 
formalism developed for wave propagation in anisotropic materials can be also used for wave 
propagation in isotropic materials and gives the expected results.  
 Consider a plane wave propagating through an isotropic material of elastic constants E  and 
ν . The wave propagates in a direction contained in the vertical plane 1 3x O x  and rotated by an 
angle θ about the 2x  axis. Do the following: 

(a) Calculate the stiffness matrix C  and the stiffness tensor c  
(b) Calculate the acoustic tensor Γ  
(c) Find the eigenvalues of the Christoffel equation 
(d) Find the wavespeeds corresponding to these eigenvalues 
(e) Find the polarization direction for each wavespeed 
(f) Identify any pure waves that might show up during the analysis 
(g) Discuss your results 

 
Numerical values:  
Wavefront direction angle 0 ,10 ,15 ,30 ,45 ,60 ,75 ,90θ = ° ° ° ° ° ° ° ° . 
Material: 7075-T6 aluminum, Table 2 
 
Solution: 
 
(a) to find the stiffness matrix C , recall Eq. (2.47) of Chapter 2, i.e.,  

2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

isotropic

λ µ λ λ
λ λ µ λ
λ λ λ µ

µ
µ

µ

 + 
 + 
 +

=  
 
 
 
  

C  (2.47) 

The Lame constants ,λ µ  are calculated with Eq. (2.45), i.e., 

 
(1 )(1 2 )

1
2(1 )

E

G E

νλ
ν ν

µ
ν

=
+ −

= =
+

            (Lame constants) (2.45) 

Upon calculation, one gets, 
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The stiffness tensor c  is calculated as shown in Problem 1. 
The theory for items (b) through (f) is same as presented in Problem 1 
Upon calculation (see MATLAB code), one gets the following numerical results: 

0θ = °  

 

10θ = °  

 
15θ = °  

 

30θ = °  
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45θ = °  

 

60θ = °  

 
75θ = °  

 

90θ = °  

 
 
===================== 
(f) Identify any pure waves that might show up in the analysis: 
The numerical results shown that, for all wave propagation directions n , the first polarization 
direction is parallel to the propagation direction, i.e., ˆ I =u n . This means that the first 
polarization direction is a pure wave because it is aligned with the wave propagation direction. 
This is the P wave of this isotropic material; the corresponding wavespeed is 

 km/s6.1486I /v v= = . 
============= 
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(g) Discuss your results: 
 
(1) In an isotropic material, we expect only two wavespeeds, the pressure (P) wave and the shear 

(S) wave. We expect the polarization corresponding to the P wave to be along the 
propagation direction. Regarding the S wave, we expect two mutually orthogonal 
polarizations that are also orthogonal to the P wave polarization. These are the shear 
horizontal (SH) and shear vertical (SV) waves. The numerical results calculated with this 
Christoffel equation algorithm confirm our expectations. 

(2) One of the three polarization vectors is always in the 2x  direction, i.e., [0 1 0]  for all angles. 
This is due to the fact that the wave propagation direction is contained in the vertical plane 

1 3x O x  and hence the wavefront normal 1 1 2 2 3 3n n e n e n e= + +
     does not have components in 

the 2x  direction. Hence the 2u  motion is always decoupled from the -1 3u u  motion. This 
[0 1 0]  polarization vector corresponds to SH wave which is decoupled from the other two 
waves. (The [0 1 0]  polarization appear sometimes as the second polarization vector and 
sometimes as the third; this is to be expected since the second and third wavespeeds are equal 
and hence their polarization vectors are interchangeable.)  

(2) The other two polarization vectors correspond to the P wave and the SV wave, respectively.  
(3) For all angles, the P wave is a pure wave because it is always parallel to the propagation 

direction. 
(4) For wave angles 0° and 90°, the P and SV waves are decoupled, [1 0 0]  and [0 0 1]  

respectively for 0°; [0 0 1]  and [1 0 0]  respectively for 90° . For angles different from 0° 
and 90°, the P and SV waves are coupled, e.g., [0.866 0 0.500]  and [ 0.500 0 0.866]−  
respectively for 30°.  

 
============== 
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PROBLEM 3: CHRISTOFFEL EQUATION IN BULK UNIDIRECTIONAL 
COMPOSITE 
Consider a plane wave propagating through an unidirectional composite material of stiffness 
matrix C . The wave propagates in the vertical plane 1 3x O x  and rotated by an angle θ about the 

2x  axis. Do the following: 
(a) Calculate the stiffness tensor c  
(b) Calculate the acoustic tensor Γ  
(c) Find the eigenvalues of the Christoffel equation 
(d) Find the wavespeeds corresponding to these eigenvalues 
(e) Find the polarization direction for each wavespeed 
(f) Identify any pure waves that might show up during the analysis 
(g) Discuss your results 

 
Numerical values:  
Wavefront direction angle 0 ,10 ,15 ,30 ,45 ,60 ,75 ,90θ = ° ° ° ° ° ° ° ° . 
T300/914 CFRP, Table 3 
 
Solution: 

 
The stiffness tensor c  is calculated as shown in Problem 1. 
The theory for items (b) through (f) is same as presented in Problem 1 
Upon calculation (see MATLAB code), one gets the following numerical results: 
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0θ = °  

 

10θ = °  

 
15θ = °  

 

30θ = °  
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45θ = °  

 

60θ = °  

 
75θ = °  

 

90θ = °  
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(f) Identify any pure waves that might show up in the analysis: 
Two pure waves have been identified as follows: 
(1)  For 0θ = ° , the wave propagation direction is 1 0 0n =   

 . This wavefront orientation 
contains a pure wave because one of the polarization directions, specifically 
ˆ 1 0 0I =   u  is aligned with the wave propagation direction 1 0 0n =   

 ; the 

corresponding wavespeed is  km/s9.6010Iv = . 
(2) For 90θ = ° , the wave propagation direction is 0 0 1n =   

 . This wavefront orientation 
contains a pure wave because one of the polarization directions, specifically 
ˆ 0 0 1I =   u  is aligned with the wave propagation direction 0 0 1n =   

 ; the 

corresponding wavespeed is  km/s2.9199Iv = . 
============= 
(g) Discuss your results: 
(1) Because the wave propagation direction is contained in the vertical plane 1 3x O x , the 

wavefront normal 1 1 2 2 3 3n n e n e n e= + +
     does not have components in the 2x  direction. 

Hence the 2u  motion is always decoupled from the -1 3u u  motion. The third polarization 
vector is always in the 2x  direction, i.e., ˆ 0 1 0III =   u ; this is true for all angles. This 
third polarization vector corresponds to a quasi SH wave decoupled from the other two 
waves  

(2) The first and second polarization vectors correspond to a quasi P wave and a quasi SV wave, 
respectively. This is especially clear at low θ  values where the quasi P wavespeed is much 
larger than the quasi SV wavespeed (e.g., ~8.38 km/s vs. ~2.17 km/s at 30θ = ° .) 

(3) For wave angles 0° and 90°, the quasi P wave is a pure wave because it is parallel to the 
propagation direction; for the other angles, the quasi P wave deviates from the wave 
propagation direction, i.e., it is not a pure wave. 

(4) For wave angles 0° and 90°, the P and SV waves are decoupled. For angles different from 0° 
and 90°, the quasi P and quasi SV waves are coupled.  

(5) At 0° angle, the quasi SH and quasi SV waves have the same wavespeeds 
 km/s1.9115II IIIv v= =  because the material is symmetric about the 1x  axis. 

(6) For all the nonzero angles, 0θ ≠ ° , the quasi SH wave has always the lowest speed 
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PROBLEM 4: CHRISTOFFEL EQUATION IN BULK ORTHOTROPIC COMPOSITE 
Consider a plane wave propagating through an unidirectional composite material of stiffness 
matrix C . The wave propagates in the vertical plane 1 3x O x  and rotated by an angle θ about the 

2x  axis. Do the following: 
(a) Calculate the stiffness tensor c  
(b) Calculate the acoustic tensor Γ  
(c) Find the eigenvalues of the Christoffel equation 
(d) Find the wavespeeds corresponding to these eigenvalues 
(e) Find the polarization direction for each wavespeed 
(f) Identify any pure waves that might show up during the analysis 
(g) Discuss your results 

 
Numerical values:  
Wavefront direction angle 0 ,10 ,15 ,30 ,45 ,60 ,75 ,90θ = ° ° ° ° ° ° ° ° . 
Fully orthotropic CFRP, Table 4 
 
Solution 

 
The stiffness tensor c  is calculated as shown in Problem 1. 
The theory for items (b) through (f) is same as presented in Problem 1 
Upon calculation (see MATLAB code), one gets the following numerical results: 
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0θ = °  

 

10θ = °  

 
15θ = °  

 

30θ = °  
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45θ = °  

 

60θ = °  

 
75θ = °  

 

90θ = °  
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(f) Identify any pure waves that might show up in the analysis: 
Two pure waves have been identified as follows: 
(1)  For 0θ = ° , the wave propagation direction is 1 0 0n =   

 . This wavefront orientation 
contains a pure wave because one of the polarization directions, specifically 
ˆ 1 0 0I =   u  is aligned with the wave propagation direction 1 0 0n =   

 ; the 

corresponding wavespeed is  km/s6.8313Iv = . 
(2) For 90θ = ° , the wave propagation direction is 0 0 1n =   

 . This wavefront orientation 
contains a pure wave because one of the polarization directions, specifically 
ˆ 0 0 1I =   u  is aligned with the wave propagation direction 0 0 1n =   

 ; the 

corresponding wavespeed is  km/s3.1305Iv = . 
============= 
(g) Discuss your results: 
(1) Because the wave propagation direction is contained in the vertical plane 1 3x O x , the 

wavefront normal 1 1 2 2 3 3n n e n e n e= + +
     does not have components in the 2x  direction. 

Hence the 2u  motion is always decoupled from the -1 3u u  motion and one polarization 
vector is always in the 2x  direction; this is true for all angles. This polarization vector 
corresponds to a quasi SH wave ˆ 0 1 0SH =   u  decoupled from the other two waves  

(2) The other two polarization vectors correspond to a quasi P wave and a quasi SV wave, 
respectively.  

(3) For wave angles 0° and 90°, the quasi P wave is a pure wave because it is parallel to the 
propagation direction; for the other angles, the quasi P wave deviates from the wave 
propagation direction, i.e., it is not a pure wave. 

(4) For wave angles 0° and 90°, the P and SV waves are decoupled. For angles different from 0° 
and 90°, the quasi P and quasi SV waves are coupled.  

(5)  The quasi SV wave has the lowest speed for small angles; at higher angles, the quasi SH 
wave has the lowest speed. The switch over between SV and SH takes place between 45° and 
60°. An iterative search revealed that the actual switch over takes place at 55.567θ = °  where 

 km/s2.5637SH SVv v= =  
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PROBLEM 5: LAMINA CHRISTOFFEL EQUATION FOR ISOTROPIC LAMINA 
Given an isotropic lamina of thickness h, solve the lamina Christoffel equation for guided wave 
propagation along the fiber direction 1x . Do the following: 

(a) For a given wavespeed v , set up the cubic equation 2α , where 2α  are the partial-wave 
slowness coefficients  

(b) Solve the cubic equation, find the three 2α  roots 2 2 2, ,I II IIIα α α , and the corresponding six 

eigenvalues (1)
Iα α= + , (2)

Iα α= − , (3)
IIα α= + , (4)

IIα α= − , (5)
IIIα α= + , (6)

IIIα α= −  

(c) Substitute each eigenvalue ( ) , 1,...,6i iα =  into the Christoffel matrix and find the 

corresponding eigenvectors ( ) , 1,...,6i i =U  
(d) Repeat for other values of v   
(e) Discuss your findings 

 
Numerical example: 7075-T6 aluminum alloy, Table 2 
 
 
Solution 
(a) Setup the cubic equation in partial-wave slowness coefficients 2α : Recall Eq. (4.37), i.e.,  
 6 4 2

6 4 2 0 0A A A Aα α α+ + + =  (4.37) 
with the coefficients 6 4 2 0, , ,A A A A  given by Eqs. (4.38)—(4.41), i.e.,  

2
6 33 44 55 33 45A C C C C C= −   (4.38) 

( )( ) ( ) ( )

2 2 2 2
4 55 44 45 55 55 33 66 44 33 11

2 2
16 45 33 45 36 13 55 45 13 55 44 45 36 55

( )( ) ( ) ( )

2 2

A C C C C C C C C C C

C C C C C C C C C C C C C C

ρν ρν ρν= − − + − + −

− + + + − + − +
 (4.39) 

( ) ( )
( )( )

2 2 2 2 2 2
2 33 11 66 44 11 55 55 66 55

2 22 2 2
11 45 36 66 13 55 55 16 45

2
16 45 36 13 55 16 33

( )( ) ( )( ) ( )( )

( ) ( ) 2( )

2

A C C C C C C C C C

C C C C C C C C C

C C C C C C C

ρν ρν ρν ρν ρν ρν

ρν ρν ρν

= − − + − − + − −

− − + − − + − −

+ + + −

(4.40) 

2 2 2 2
0 11 66 16 55( )( ) ( )A C C C Cρν ρν ρν = − − − −   (4.41) 

 
(b) Solve Eq. (4.37) using a polynomial roots algorithm available in MATLAB to get 

2 2 2, ,I II IIIα α α ; then, separate the six individual eigenvalues (1)
Iα α= + , (2)

Iα α= − , (3)
IIα α= + , 

(4)
IIα α= − , (5)

IIIα α= + , (6)
IIIα α= − . 

 
Because the material is isotropic, the solution has a pair of double roots I II Sα α α= =  since, for 
isotropic materials, there is no difference between the SH and SV shear waves that propagate 
with the same wavespeed which is the shear wavespeed in the isotropic material. The third root 
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correspond to the pressure wave, i.e., III Pα α= . Then, the six individual 'sα  are (1)
Sα α= + , 

(2)
Sα α= − , (3)

Sα α= + , (4)
Sα α= − , (5)

Pα α= + , (6)
Pα α= −  

 
(c) Substitute each eigenvalue ( ) , 1,...,6i iα =  into the Christoffel matrix of Eq. (4.35), i.e., 

( ) ( )
( ) ( )

( ) ( ) ( )

2 2 2
11 55 16 45 13 55

1
2 2 2

16 45 66 44 36 45 2

2 2 3
13 55 36 45 55 33

ˆ 0
ˆ 0
ˆ 0

C v C C C C C u
C C C v C C C u

uC C C C C v C

ρ α α α

α ρ α α

α α ρ α

 − + + +     
    + − + + =    
        + + − +  

 (4.35) 

Find the corresponding eigenvector ( ) , 1,...,6i i =U  using a standard algebraic eigen problem 
algorithm (e.g., eig) or a singular value decomposition (SVD) algorithm and choosing the 
eigenvector corresponding to the eigenvalue which has a value zero. 
 Note that (1) (3)

Sα α α= = + ; This means that the Christoffel matrix will have two zero-valued 
eigenvalues, with the corresponding eigenvectors being orthogonal to each other. These are the 
SH and SV polarization vectors which are orthogonal to each other.  Similarly, for the other SH 
and SV pair, (2) (4)

Sα α α= = − .  
(d) The above analysis is repeated for all wavespeed v  values. The plot below shows the 
variation of 2α  with wavespeeds.  
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(e) Discussion: 
The 2α  Curves 

(e1) Examination of the 2α  curves reveals three monotonically increasing curves. Two of these 
curves, 2

12α  and 2
34α  are overlapped because they represent double roots corresponding to SV, 

SH having same wavespeeds in the isotropic material. The third curve, 2
56α , corresponds to the P 

wave. 
(e2) All three 2α  curves seem to start from same values at almost zero wavespeed1 ( 0v ≈ ) and 
then spread out, the S curves 2

12α , 2
34α growing faster than the P curve 2

56α .  
(e3) The S curves cross the horizontal axis at a wavespeed  m/s3,000Sv ≈ . The P curve crosses 
the horizontal axis at a higher wavespeed  m/s6,000/v ≈ . 
 
The Polarization Vectors 
(e4) Examination of the polarization vectors permits the identification of the SH wave associated 
with 2

34α . The SH wave is polarized in the 2x  direction, i.e., its polarization vector only contains 
the 2u  component. This happens at all wavespeeds. 

 
(e5) At all wavespeeds, the SV wave 2

12α  and the P wave 2
56α , have polarization vectors aligned 

with the vertical plane O1 3x x  because they contain only the 1 3,u u  displacements. Note that 
these vectors are complex at speeds below the crossover speeds  m/s3,000Sv ≈ , 

 m/s6,000/v ≈ . 

 

                                                 
1 exact 0v =  is not computable correctly; here, we took  m/smin 100v =  

SH polarization 

complex P polarization vectors complex SV polarization vectors 
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(e6) As the wavespeed passes the S crossover point  m/s3,000Sv ≈ , the SV polarization vectors 
corresponding to 1 2,α α  switch from complex to real values.  

 
 
(e7) As the wavespeed passes the P crossover point  m/s6,000/v ≈ , the P polarization vectors 
corresponding to 5 6,α α  switch from complex to real values. 

 
 
 
 
  

real valued SV vectors above  
the S crossover speed 

complex SV vectors below  
the S crossover speed 

complex P vectors below  
the P crossover speed 

real valued P vectors above  
the P crossover speed 
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PROBLEM 6: LAMINA CHRISTOFFEL EQUATION FOR UNIDIRECTIONAL 
COMPOSITE LAMINA 
 
Given a unidirectional composite lamina of thickness h, solve the lamina Christoffel equation for 
guided wave propagation along the fiber direction 1x . Do the following: 

(a) For a given wavespeed v , set up the cubic equation 2α , where 2α  are the partial-wave 
slowness coefficients  

(b) Solve the cubic equation, find the three 2α  roots 2 2 2, ,I II IIIα α α , and the corresponding six 

eigenvalues (1)
Iα α= + , (2)

Iα α= − , (3)
IIα α= + , (4)

IIα α= − , (5)
IIIα α= + , (6)

IIIα α= −  

(c) Substitute each eigenvalue ( ) , 1,...,6i iα =  into the Christoffel matrix and find the 

corresponding eigenvectors ( ) , 1,...,6i i =U  
(d) Repeat for other values of v   
(e) Discuss your findings 

 
Numerical example: T300/914 CFRP, Table 3 
 
 
Solution 
(a) Setup the cubic equation in partial-wave slowness coefficients 2α : Recall Eq. (4.37), i.e.,  
 6 4 2

6 4 2 0 0A A A Aα α α+ + + =  (4.37) 
with the coefficients 6 4 2 0, , ,A A A A  given by Eqs. (4.38)—(4.41), i.e.,  

2
6 33 44 55 33 45A C C C C C= −   (4.38) 

( )( ) ( ) ( )

2 2 2 2
4 55 44 45 55 55 33 66 44 33 11

2 2
16 45 33 45 36 13 55 45 13 55 44 45 36 55

( )( ) ( ) ( )

2 2

A C C C C C C C C C C

C C C C C C C C C C C C C C

ρν ρν ρν= − − + − + −

− + + + − + − +
 (4.39) 

( ) ( )
( )( )

2 2 2 2 2 2
2 33 11 66 44 11 55 55 66 55

2 22 2 2
11 45 36 66 13 55 55 16 45

2
16 45 36 13 55 16 33

( )( ) ( )( ) ( )( )

( ) ( ) 2( )

2

A C C C C C C C C C

C C C C C C C C C

C C C C C C C

ρν ρν ρν ρν ρν ρν

ρν ρν ρν

= − − + − − + − −

− − + − − + − −

+ + + −

(4.40) 

2 2 2 2
0 11 66 16 55( )( ) ( )A C C C Cρν ρν ρν = − − − −   (4.41) 

 
(b) Solve Eq. (4.37) using a polynomial roots algorithm available in MATLAB to get 

2 2 2, ,I II IIIα α α ; then, separate the six individual eigenvalues (1)
Iα α= + , (2)

Iα α= − , (3)
IIα α= + , 

(4)
IIα α= − , (5)

IIIα α= + , (6)
IIIα α= −  

(c) Substitute each eigenvalue ( ) , 1,...,6i iα =  into the Christoffel matrix of Eq. (4.35), i.e., 
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( ) ( )
( ) ( )

( ) ( ) ( )

2 2 2
11 55 16 45 13 55

1
2 2 2

16 45 66 44 36 45 2

2 2 3
13 55 36 45 55 33

ˆ 0
ˆ 0
ˆ 0

C v C C C C C u
C C C v C C C u

uC C C C C v C

ρ α α α

α ρ α α

α α ρ α

 − + + +     
    + − + + =    
        + + − +  

 (4.35) 

Find the corresponding eigenvector ( ) , 1,...,6i i =U  using a standard algebraic eigen problem 
algorithm (e.g., eig) or a singular value decomposition (SVD) algorithm and choosing the 
eigenvector corresponding to the eigenvalue which has a value zero. 
(d) The above analysis is repeated for all wavespeed v  values 
 
The plot below shows the variation of 2α  with wavespeeds.  
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(e) Discussion: 
 
The 2α  Curves 

(e1) Examination of the 2α  curves reveals three monotonically increasing curves. Two of these 
curves, 2

12α  and 2
34α , seem to be related and intersect each other at the point where they cross 

over from the negative lower domain into the positive upper domain. We assume that these two 
waves are the quasi S waves. The third curve, 2

56α , is quite separate; we assume this to be the 
quasi P wave. 
(e2) The quasi P curve stars at around 2

56 23α ≈ −  at almost zero wavespeed2 ( 0v ≈ ) and 
increases monotonically crossing the horizontal axis at  m/s10,000/v ≈ .  
(e3) The quasi S curves start much closer to zero and also increase monotonically, one faster 
than the other. They cross the horizontal axis simultaneously at a wavespeed around 

 m/s2,000Sv ≈ . 

(e4) At low wavespeeds below the crossover wavespeed around 2,000 m/s, the quasi SH 2
34α

curve has middle position among the curves shown on the plot. As the wavespeed passes the 
crossover point, the quasi SH curve 2

34α  switches from the middle to the top position on the plot. 
 
The Polarization Vectors 
(e4) Examination of the polarization vectors are such that a quasi SH wave can be identified. The 
quasi-SH wave is associated with 2

34α . The SH wave is polarized in the 2x  direction, i.e., its 
polarization vector only contains the 2u  component. The quasi SH wave is orthogonal onto the 

other two waves, the quasi SV wave 2
12α  and the quasi P wave 2

56α  which contain only the 

1 3,u u  displacements. This phenomenon persist for all wavespeeds. 
 

 
 
 
  

                                                 
2 exact 0v =  is not computable correctly; here, we took  m/smin 10v =  

quasi-SH polarization 
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(e5) At all wavespeeds, the quasi SV wave 2
12α  and the quasi P wave 2

56α , have polarization 
vectors aligned with the vertical plane O1 3x x  because they contain only the 1 3,u u  
displacements. At low wavespeeds, these vectors are complex. 

 
 
(e6) As the wavespeed passes the S crossover point  m/s2,000Sv ≈ , the SV polarization vectors 
corresponding to 1 2,α α  switch from complex to real values.  

 
 
(e7) As the wavespeed passes the P crossover point  m/s10,000/v ≈ , the P polarization vectors 
corresponding to 5 6,α α  switch from complex to real values. 

 
 
 

  

complex quasi P polarization vectors complex quasi SV polarization vectors 

complex quasi SV vectors below  
the S crossover speed 

real valued quasi SV vectors above  
the S crossover speed 

complex quasi P vectors below  
the P crossover speed 

real valued quasi P vectors above  
the P crossover speed 
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PROBLEM 7: LAMINA CHRISTOFFEL EQUATION FOR OFF-AXIS COMPOSITE 
LAMINA 
 
Given a unidirectional composite lamina of thickness h, solve the lamina Christoffel equation for 
guided wave propagation along an off-axis direction. Do the following: 

(a) For a given wavespeed v , set up the cubic equation 2α , where 2α  are the partial-wave 
slowness coefficients  

(b) Solve the cubic equation, find the three 2α  roots 2 2 2, ,I II IIIα α α , and the corresponding six 

eigenvalues (1)
Iα α= + , (2)

Iα α= − , (3)
IIα α= + , (4)

IIα α= − , (5)
IIIα α= + , (6)

IIIα α= −  

(c) Substitute each eigenvalue ( ) , 1,...,6i iα =  into the Christoffel matrix and find the 

corresponding eigenvectors ( ) , 1,...,6i i =U  
(d) Repeat for other values of v   
(e) Repeat (a) through (e) for other values of θ  
(f) Discuss your findings 

 
Numerical example: T300/914 CFRP, Table 3;  
Off-axis direction angle θ = ° ° ° °0 ,5 ,...,85 ,90 , i.e., in 5°  increments. 
 
 
Solution 
(a) Calculate the rotated stiffness matrix C  using Eqs. (2.179) and (2.193) of Chapter 2. 
Setup the cubic equation in partial-wave slowness coefficients 2α : Recall Eq. (4.37), i.e.,  
 6 4 2

6 4 2 0 0A A A Aα α α+ + + =  (4.37) 
with the coefficients 6 4 2 0, , ,A A A A  given by Eqs. (4.38)—(4.41), i.e.,  

2
6 33 44 55 33 45A C C C C C= −   (4.38) 

( )( ) ( ) ( )

2 2 2 2
4 55 44 45 55 55 33 66 44 33 11

2 2
16 45 33 45 36 13 55 45 13 55 44 45 36 55

( )( ) ( ) ( )

2 2

A C C C C C C C C C C

C C C C C C C C C C C C C C

ρν ρν ρν= − − + − + −

− + + + − + − +
 (4.39) 

( ) ( )
( )( )

2 2 2 2 2 2
2 33 11 66 44 11 55 55 66 55

2 22 2 2
11 45 36 66 13 55 55 16 45

2
16 45 36 13 55 16 33

( )( ) ( )( ) ( )( )

( ) ( ) 2( )

2

A C C C C C C C C C

C C C C C C C C C

C C C C C C C

ρν ρν ρν ρν ρν ρν

ρν ρν ρν

= − − + − − + − −

− − + − − + − −

+ + + −

(4.40) 

2 2 2 2
0 11 66 16 55( )( ) ( )A C C C Cρν ρν ρν = − − − −   (4.41) 

 
(b) Solve Eq. (4.37) using a polynomial roots algorithm available in MATLAB to get 

2 2 2, ,I II IIIα α α ; then, separate the six individual eigenvalues (1)
Iα α= + , (2)

Iα α= − , (3)
IIα α= + , 

(4)
IIα α= − , (5)

IIIα α= + , (6)
IIIα α= −  
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(c) Substitute each eigenvalue ( ) , 1,...,6i iα =  into the Christoffel matrix of Eq. (4.35), i.e., 

( ) ( )
( ) ( )

( ) ( ) ( )

2 2 2
11 55 16 45 13 55

1
2 2 2

16 45 66 44 36 45 2

2 2 3
13 55 36 45 55 33

ˆ 0
ˆ 0
ˆ 0

C v C C C C C u
C C C v C C C u

uC C C C C v C

ρ α α α

α ρ α α

α α ρ α

 − + + +     
    + − + + =    
        + + − +  

 (4.35) 

Find the corresponding eigenvector ( ) , 1,...,6i i =U  using a standard algebraic eigen problem 
algorithm (e.g., eig) or a singular value decomposition (SVD) algorithm and choosing the 
eigenvector corresponding to the eigenvalue which has a value zero. 
(d), (e) The above analysis is repeated for all values of wavespeed v  and off-axis angle θ   
The plot below shows the variation of 2α  with wavespeeds for 19 values of θ .  
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(f) Discussion: 
 
The 2α  Curves 

(f1) At low values of the off-axis angle θ , the behavior of the 2α  curves resemble the behavior 
for an unidirectional lamina at 0θ = ° , i.e., one can distinguish a quasi P wave and two quasi S 
waves. The P wave stars at around 2 23Iα ≈ −  at almost zero wavespeed3 ( 0v ≈ ) and increases 
monotonically crossing the horizontal axis at high wavespeed values (  m/s10,000v ≈ ). The 

0v ≈  value of the quasi P wave decreases with increasing off-axis angle θ . The wavespeed at 
which the quasi P wave crosses over the horizontal axis also decreases with increasing off-axis 
angle θ . 
 The S waves start much closer to zero and also increase monotonically, one faster than the 
other. They cross the horizontal axis simultaneously at a wavespeed around 2,000 m/s; this 
crossover wavespeed decreases as the off-axis angle increases. 
(f2) as the off-axis angle θ  increases, one observes a tendency for quasi P wave curves and one 
of the quasi S wave curve to come together at higher wavespeed values 
(f3) at high values of the off-axis angle θ , the P wave curve and the S wave curves come 
together at lower wavespeeds  
(f4) at 90θ = ° , all three 2α  curves stem for the same point just below the horizontal axis at 

0v =  and then fan out. 
 
 
The Polarization Vectors 
 
(f5) at 0θ = ° , the polarization vectors are such that a quasi SH wave can be identified. This 
phenomenon persist for all wavespeeds. 
 

 
 
(f6) at low values of the off-axis angle θ , the polarization vectors DO NOT resemble the 
behavior for an unidirectional lamina with 0θ = ° . The main difference is that the polarization 
vectors become coupled as soon as the off-axis angle has a non-zero value. Hence, it is not 
possible to identify a quasi SH wave as it was possible for the unidirectional lamina ( 0θ = ° ). 
This behavior persist throughout all the off-axis angle θ  with the exception of 90θ = ° . 

                                                 
3 exact 0v =  is not computable correctly 

quasi-SH polarization 
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(f7) at 90θ = ° , when all three 2α  curves stem for the same point just below the horizontal axis 
at 0v ≈ , the polarization vectors have again become decouples and one can identify a quasi SH 
wave for 0v > . (Note that at 0v ≈ , the polarization vectors are all identical because the 2α  
curves stem for the same point at 0v ≈ . )  

 
 
  

quasi-SH polarization 
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PROBLEM 8: LAMINA CHRISTOFFEL EQUATION IN ORTHOTROPIC 
COMPOSITE LAMINA 
 
Given a fully orthotropic composite lamina of given thickness h, solve the lamina Christoffel 
equation for guided wave propagation along the fiber direction. Do the following: 

(a) For a given wavespeed v , set up the cubic equation in partial wave slowness coefficients 
2α  

(b) Solve the cubic equation, find the three 2α  roots 2 2 2, ,I II IIIα α α , and the corresponding six 

eigenvalues (1)
Iα α= + , (2)

Iα α= − , (3)
IIα α= + , (4)

IIα α= − , (5)
IIIα α= + , (6)

IIIα α= −  

(c) Substitute each eigenvalue ( ) , 1,...,6i iα =  into the Christoffel matrix and find the 

corresponding eigenvectors ( ) , 1,...,6i i =U  
(d) Repeat for other values of v  
(e) Discuss your findings 

 
Numerical example: Fully orthotropic CFRP composite, Table 4 
 
 
Solution 
 
(a) Setup the cubic equation in partial-wave slowness coefficients 2α : Recall Eq. (4.37), i.e.,  
 6 4 2

6 4 2 0 0A A A Aα α α+ + + =  (4.37) 
with the coefficients 6 4 2 0, , ,A A A A  given by Eqs. (4.38)—(4.41), i.e.,  

2
6 33 44 55 33 45A C C C C C= −   (4.38) 

( )( ) ( ) ( )

2 2 2 2
4 55 44 45 55 55 33 66 44 33 11

2 2
16 45 33 45 36 13 55 45 13 55 44 45 36 55

( )( ) ( ) ( )

2 2

A C C C C C C C C C C

C C C C C C C C C C C C C C

ρν ρν ρν= − − + − + −

− + + + − + − +
 (4.39) 

( ) ( )
( )( )

2 2 2 2 2 2
2 33 11 66 44 11 55 55 66 55

2 22 2 2
11 45 36 66 13 55 55 16 45

2
16 45 36 13 55 16 33

( )( ) ( )( ) ( )( )

( ) ( ) 2( )

2

A C C C C C C C C C

C C C C C C C C C

C C C C C C C

ρν ρν ρν ρν ρν ρν

ρν ρν ρν

= − − + − − + − −

− − + − − + − −

+ + + −

(4.40) 

2 2 2 2
0 11 66 16 55( )( ) ( )A C C C Cρν ρν ρν = − − − −   (4.41) 

 
(b) Solve Eq. (4.37) using a polynomial roots algorithm available in MATLAB to get 

2 2 2, ,I II IIIα α α ; then, separate the six individual eigenvalues (1)
Iα α= + , (2)

Iα α= − , (3)
IIα α= + , 

(4)
IIα α= − , (5)

IIIα α= + , (6)
IIIα α= −  

(c) Substitute each eigenvalue ( ) , 1,...,6i iα =  into the Christoffel matrix of Eq. (4.35), i.e., 
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( ) ( )
( ) ( )

( ) ( ) ( )

2 2 2
11 55 16 45 13 55

1
2 2 2

16 45 66 44 36 45 2

2 2 3
13 55 36 45 55 33

ˆ 0
ˆ 0
ˆ 0

C v C C C C C u
C C C v C C C u

uC C C C C v C

ρ α α α

α ρ α α

α α ρ α

 − + + +     
    + − + + =    
        + + − +  

 (4.35) 

Find the corresponding eigenvector ( ) , 1,...,6i i =U  using a standard algebraic eigen problem 
algorithm (e.g., eig) or a singular value decomposition (SVD) algorithm and choosing the 
eigenvector corresponding to the eigenvalue which has a value zero. 
(d) The above analysis is repeated for all wavespeed v  values 
 
The plot below shows the variation of 2α  with wavespeeds.  
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(e) Discussion: 
 
The 2α  Curves 
 
(e1) Examination of the 2α  curves reveals three monotonically increasing curves. Two of these 
curves, 2

12α  and 2
34α , seem to be related. We assume that these are the quasi SV and SH curves 

that were observed in a unidirectional lamina. However, the intersection of these quasi S curves 
does not take place when they cross the horizontal axis, but later which is different from the 
behavior observed in the unidirectional lamina. 
 
(e2) The quasi S wave curves cross the horizontal axis at two different points, one at 

 m/s1,700SVv ≈ , the other at  m/s3,500SHv ≈  (the assignation of ‘SH’ and ‘SV’ labels is done 
using the polarization vectors, see (e5) below). 
 
(e3) At low wavespeeds, the quasi SH 2

34α curve has middle position among the curves shown on 
the plot. As the wavespeed passes the intersection point,  m/s5,000SH SVv = ≈ , the quasi SH 

curve 2
34α  switches from the middle to the top position on the plot.  

 
(e4) The quasi P wave curve starts well below the quasi S curves and also increases 
monotonically. It crosses the horizontal axis around  m/s7,000/v ≈ . 
 
 
The Polarization Vectors 
 
(e5) Examination of the polarization vectors are such that a quasi SH wave can be identified. The 
quasi-SH wave is associated with the 2

34α . The SH wave is polarized in the 2x  direction, i.e., its 
polarization vector only contains the 2u  component. The quasi SH wave is orthogonal onto the 

other two waves, the quasi SV wave 2
12α  and the quasi P wave 2

56α  which contain only the 

1 3,u u  displacements, i.e., have polarization vectors aligned with the vertical plane O1 3x x . This 
phenomenon is observed at all wavespeeds. 
 

 
 
  

quasi-SH polarization 



 31 

(e5) At low wavespeeds, quasi SV and quasi P vectors are complex. 
 

 
 
(e6) As the wavespeed passes the SV crossover point  m/s1,700SVv ≈ , the SV polarization 
vectors corresponding to 1 2,α α  switch from complex to real values.  
 

 
 
(e7) As the wavespeed passes the P crossover point  m/s7,000/v ≈ , the P polarization vectors 
corresponding to 5 6,α α  switch from complex to real values. 
 

 
 
 
 

complex quasi P polarization vectors complex quasi SV polarization vectors 

complex quasi SV vectors below  
the SV crossover speed 

real valued quasi SV vectors above  
the SV crossover speed 

complex quasi P vectors below  
the P crossover speed 

real valued quasi P vectors above  
the P crossover speed 
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